Treatment-Naïve Quiescent Choroidal Neovascularization in Geographic Atrophy Secondary to Age-related Macular Degeneration

Capuano V1, Miere A1, Querques L2, Sacconi R2, Carnevali A2, Bandello F1, Souied E. H.2 Querques G1,2

1Department of Ophthalmology, University Paris Est Creteil, Centre Hospitalier Intercommunal de Creteil, Creteil, France
2Department of Ophthalmology, University Vita-Salute, Scientific Institute San Raffaele, Milano, Italy

PURPOSE: to describe treatment-naïve quiescent choroidal neovascularization (CNV) by multimodal imaging in patients with geographic atrophy (GA) secondary to non-exudative age-related macular degeneration (AMD).

METHODS: A pool of patients with quiescent CNV and GA secondary to AMD with or without foveal sparing (FS) was indviduated and retrospectively analysed at 2 high-volume referral centers. Treatment-naïve quiescent CNV (i.e. absence of exudation for at least 6 months) was detected on multimodal imaging Fluorescein angiography (FA), indocyanine green angiography (ICGA), spectral domain optical coherence tomography (SD-OCT), fundus autofluorescence (FAF), near-infrared FAF (NIR-FAF), were performed as a part of complete ophthalmologic examination. In a subset of patient, optical coherence tomography angiography (OCT-A) was performed. Quiescent CNV were classified with respect to shape (circular or irregular), presence of “visible” or “not visible” core (core has been defined as a vessel of grater calibre or “trunk vessel” from which other, smaller vessels branch off), and margin (“large loops” or “small loops”)

RESULTS: Thirteen eyes of 13 patients (11 female, 80.1 ± 11.6 years old) were included. Mean follow up was 45.77 ± 14.7 months. BVCA was 0.27 ± 0.25 logMAR at baseline and 0.34 ± 0.27 at last follow up (p 0.11). Quiescent CNV was located within the fovea in 10 eyes (foveal involvement) and foveal sparing in 3 eyes. In 5/13 eyes (38%) CNV developed exudation during follow up (after a mean of 20 ± 12.4 months). On OCTA, among the 8 eyes not developing exudation during follow up, 3 quiescent CNVs were classified as circular and 5 as irregular. In two eyes the core was not visible, in 6 eyes was visible (“central core” in 3 eyes and “eccentric core” in 3 eyes). In 5 eyes the margin was classified as “large loops” and in 3 eyes as “small loops”.

CONCLUSIONS: Treatment-naïve quiescent CNV can be present in GA secondary to AMD and may explain persistence of FS during follow up. OCT-A allows to non-invasively identify quiescent CNV in GA secondary to AMD. Closer follow up is suggested in patients with quiescent CNV in FS secondary to AMD as exudation can develop.

References