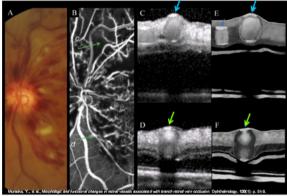
Retinal vein occlusion : morphological study of retinal veins in SD-OCT and its correlations with clinical and angiographic findings

Elsa BRUYERE¹; Agnès GLACET-BERNARD¹; Anouck GEORGES¹; Cynthia KAMAMI-LEVY¹; Olga ROSTAQUI¹; Giueseppe QUERQUES¹; Eric H SOUIED¹.

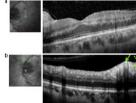

(1) Retina Creteil. University Paris Est Creteil. France

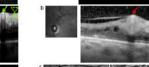
Purpose:

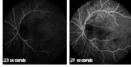
Characteristic signs related to blood flow were described in spectral domain optical coherent tomography (SD-OCT) in patients with branch retinal vein occlusions¹. The resulting image of the scan of the veins was either an hourglass-shape (HGS) when the blood flow was maintained (green arrow), or an homogeneous internal reflectivity (HR): slow flow <5mmseconds (blue arrow).

The purpose of this study was to analyze possible correlations between SD-OCT, clinical and angiographic findings.

Methods:


Prospective study of patients with branch (BRVO) or central retinal vein occlusion (CRVO). For each patient: major veins cross-sectional SD-OCT images, central retina thickness (CRT), visual acuity measurement, initial fluorescein angiography (and on request during follow-up) were performed.


Results:


The cross-sections of the major retinal veins showed an hourglass-shape in 19 patients and an homogeneous reflectivity in 21 patients. Mean difference between arterial filling time and venous filling time on angiography (Delta) in the homogeneous-reflectivity group was significantly longer than in the hourglass-shape group (11.0 seconds and 6.9 seconds respectively, p=0.004). Retinal ischemia was also larger in the homogeneous-reflectivity group (p=0.007).

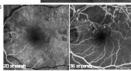

THI .	(29)		HGST		HRE	total®	
Patients/lincluded/ii			19		21	400	1
Occlusion(type://	branchtt		9	1	58	100	1
	hemicentrallyeinff		6		Of	6/	
	retin allivein(il		80		168	240	
Age(bf/b cclusion(i)	recent(\$12 mont hs/li)		1.1		100	21	
THI .	long@tanding@@@months@		8		110	190	
Risk/factors/bflivein/bcclusion/ll		(22)		1995		IBI	
	arterial/hypertension(f)	7000	70	100	88	15	
	diabetell		10		28	31	
	dyslipidemiall		70		40	11	
	sleep@pnea@yndrom@		a		38	31	
	glaucomatit	8	6	5	80	140	
mean@gellyears)(II			65,9		67,71	66,71	p=0,
mean/best/borrected/Visual/Acuity/logMAR(Snellen)//			0,57(0,3)	0.1	84(80,15)0	0,64(\$0,25)(p=0

Table 1: Baseline Characteristics

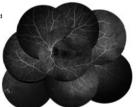


Figure 1: 40 year-old man with recent (< Imorth) nethal velo cocksion. Machian section 30→0 T flid a normal machiant behaves (and delicities section al 50→0 CT (b) shows to rightes thape (given arrow). Offercock between artical and velo continuing the (%) on fitorescell angliography is 4 seconds and no perpheral facilier hand (see him 4 delicities).

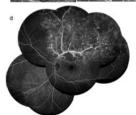
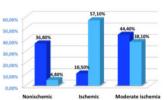



Figure 2: 41 year-old mail with Smorths brack instituted for extrained to conclusion. Sare the most harsection SD-OCT find a cyclotid machtaire demail (ii) and very conservation and SD-OCT (iii) shows in omage reposite feet with (iv) did arrow). Difference between after that and very loss filling time (iii) or the respectively be 16 recorded and peripheral superior temporal inclemina (iv).

HGS®	HR	p⊠	95%%confindence@ interval@
65,61	67,71	0,65	22 (2)
0,570	0,840	0,16	20 (2)
22,21	241	0,414	20 (2)
29,11	35,10	0,041	20 (2)
71	11,10	0,004	1,42-6,790
4060	5760	0,056	20 (21
10	2,31	0,004	0,48-2,290
	65,61 0,571 22,21 29,11 71 4061	65,61 67,71 0,571 0,841 22,21 241 29,11 35,11 71 11,11 4061 5761	65,61 67,7 0,65 0,57 0,84 0,16 22,21 24 0,414 29,11 35,11 0,004 7 11,11 0,004 406 576 0,056

Table 2: Comparison between clinical, CRT, angiographic findings and veins cross sectional SD-OCT images.

*retinal ischemia was evaluated on fluorescein angiography and graded from 0 to 5

p=0,002, KNH2Test

Figure 3: Distribution of veins cross-sectional SD-OCT images by ischemic, nonischemic or moderate ischemic retinal vein occlusion types.

- Retinal ischemia was classified in three groups based on its extend measures on angiography
- -Nonischemic retinal vein occlusion
- -Retinal isohemia was established through different parameters including visual acuity, retinal transit time and non-perfusion areas on fluorescein angiography, and OCT $^{23.45}$
- -Moderate ischemia was defined as non-perfusion areas < 50% of the occluded territories and did not meet the criteria of ischemic type.

	SENSIBILITY	SPECIFICITY
	N=14 (3/11)*	N=26 (13/13)*
1. OCT : presence of HR	86% (66% / 91%)	65% (46% / 85%)
2. OCT CRT (≥700µ)	29% (100% / 9%)	88% (85% / 85%)
1. ANGIO DELTA (≥10sec)	50% (33% / 55%)	68% (50% / 85%)
2. ANGIO Nonperfusion (≥50%) ≥2,5 CRVO, ≥1 BRVO, ≥ 2 Hemicentral vein occlusion	100% (100% / 100%)	96% (100% / 92%)
Visual acuity (≤20/200)	62% (100% / 55%)	81% (92% / 77%)
ANGIO 2 criteria (1 or 2)	100% (100% / 100%)	69% (54% / 85%)
OCT 2 criteria (1 or 2)	93% (100% / 91%)	65% (46% / 69%)
VA+OCT (1 or 2 or 3)	100%	58%

Table 3: Sensibility and specificity of different diagnostic tools to distinguish ischemic retinal vein occlusion.

Bibliography:

- Muraoka, Y., et al., Mojohologic and functional changes in retinal vessels associated with branch retinal vein occlusion. Ophthalmology. 120(1): p. 91-9.
- Natural history and clinical management of central retinal vein occlusion The Central Vein Occlusion Study Group. Arch Ophthalmol, 1997. 115(4): p. 496-91.
- Glacet-Bernard, A., et al., Prognostic factors for retinal liein occlusion: prospective study of 175 cases. Ophthalmology, 1996. 103(4): p. 551-60.
- 4. Hayreh, S.S., Classification of central retinal vein occlusion. Ophthalmology, 1983, 90(5): p. 458-74.
- Martinet, V., et al., Macular edema in retinal vein occlusion: correlation study between optical coherence tomography, tuoiescein angiography and visual acuity. Int. Ophthalmol., 2012. 32(4): p. 369-377.

Conclusion:

These results confirmed that the presence of homogeneous reflectivity on SD-OCT is correlated to more severe RVO forms with slower venous circulation and with retinal non-perfusion.

^{*} Total (recent<2months / long standing 2 2months)